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Interpretation of non-ideal dielectric plots 
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Physics Department, Royal Holloway and Bedford New College, University of London, Egham, 
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A semi-circular complex plane plot of permittivity corresponds to an ideal Debye dielectric, 
while that of impedance represents a parallel combination of a conductance and an ideal 
capacitor. Deviations from such semi-circular plots are normally observed in both situations 
and there is a tendency to interpret them in terms of distributions of relaxation times (DRT). 
As an interpretation of the permittivity response this may or may not be physically justified in 
any particular case, but there is no fundamental objection to its use for homogeneous media, 
since it implies the coexistence in the medium of parallel processes. On the other hand, the 
use of this approach in the interpretation of non-ideal complex impedance plots is inherently 
wrong in application to homogeneous media. 

1. In troduct ion  
The dielectric properties of  most materials deviate 
more or less significantly from the classically expected 
simple behaviour which, according to the context, 
is associated with the ideal Debye response or the 
parallel combination of a loss-free capacitor with 
a conductor. Both these give simple semi-circular 
plots in the complex plane or permittivity and of 
impedance, respectively, the former being favoured 
by the "insulating" or dielectric school concerned 
primarily with low-loss materials, the latter by electro- 
chemists interested in the response of relatively con- 
ducting liquid or solid electrolytes. In both situations, 
which correspond to physically very different systems, 
there is a tendency to "interpret", or more correctly 
explain away the deviations from the ideal behaviour 
in terms of "distributions of parameters" which may 
be characterized by suitable distribution functions and 
these are said to give a "measure" of the deviations 
from ideality. 

Leaving aside for the present the question of the 
physical justification for the adoption of the "distri- 
butionist" approach, some objections to which having 
been discussed in reference [1], we propose in this 
communication to draw attention to certain more 
general limitations to the validity of  this reasoning in 
the case of  impedance plots. 

The dielectric properties are commonly expressed as 
complex plane plots of permittivity, ~(co) = e(~o) - 
is" (r or of the equivalent complex capacitance which 
is given by 

C(co) = C ' ( c o ) -  iC"(co) = m~(co) (1) 

where m is a suitable geometrical factor. Alternatively, 
we may define the admittance IT(co) = ico(~(co) 
or impedance Z(co)=  Y-~, depending partly on 
the accepted "ethos" in the branch of science 
concerned. 

The frequency dependence of  the "ideal", i.e. Debye 
type is given by the expression for the dielectric 
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susceptibility 

~(co) = Z'(r - i;('(co) = ~(co) - e~o 

= A~(1 + icon) -~ (2) 

where e~ denotes the "high-frequency" limit of  the 
permittivity, Ae = e(0) - e~ is known as the dielec- 
tric increment, e(0) is the low-frequency limit of  e and 

is the relaxation time. The imaginary part of the 
susceptibility ;('(co) reaches its peak at the loss peak 
frequency cop = 1/3. The complex permittivity plot of 
a Debye system represents a semicircle, as shown in 
Fig. 1 and the corresponding impedance plot may 
be rather complicated, depending on the ratio k = 
A ~ / ~  = e(O)/e~ - 1. I f k  >> 1 the system behaves as 
a simple series R - C  circuit, i.e. it gives a vertical line 
in the Z plane, while in the more general case we may 
write 

Z(x) = (z/eo~)[ix + k(1 + 1/ix) '] 1 (3) 

with x =cov being a dimensionless frequency variable. 
The most elementary complex impedance plot 

corresponds to a parallel combination of an ideal 
capacitor and a conductor and it represents a semi- 
circle in the Z plane which is completely analogous to 
the Debye permittivity circle shown in Fig. 1. Physically 
this might represent a system consisting of  a loss-free 
"lattice" in which were embedded ideally conducting, 
i.e. infinitely rapidly responding charge carriers, such 
as ions or electrons. However, most real electrochemi- 
cal systems show a completely different behaviour 
which will be discussed below. 

2. Empirical approximations 
It is a well-established fact that the behaviour of  solid 
materials deviates more or less strongly from the ideal 
Debye response [1], and may be described by the 
empirical "universal" form which is given at high 
frequencies by 

~(co) = O(co/cop) "-1 for co/COp >> 1, (4) 

with 0 < n < 1 
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Figure l The complex permittivity plot corresponding to the ideal 
Debye response, showing the characteristic values of the real part at 
zero and infinitely high frequencies. 

which implies that 

Z"(co) = cot(nn/2)Z'(co) oc co" ' (5) 

and at low frequencies by the expressions [2] 

Z" (co) oc Z(0) - Z(co) oc corn for co/COp ~ l, (6) 

with 0 < m < 1 

The resulting (~(co) plots are correspondingly dis- 
torted from the simple semi-circular shape of the ideal 
Debye system and they may be approximated by one 
of the empirical forms [3], namely the Cole-Cole 
relation 

C(co) oc [1 + (icov) '-~] ' (7) 

which introduces an empirical factor c~ causing a tilt- 
ing of the circular arc by an angle en/2, or the Cole- 
Davidson relation 

C(co) oc (1 + ico~)~-' (8) 

which results in a pear-shaped (~(co) arc, or finally the 
Havriliak-Negami function which combines the other 
t w o  

C(co) oc [1 + (icor)' ~]~-' (9) 

Similar relations may be applied to non-ideal impedance 
plots, an example of which is shown in Fig. 2. 

We note that the Cole-Cole and Cole-Davidson 
expressions are one-parameter functions, while the 
Havriliak-Negami function uses two parameters 
and is therefore more realistic in representing the 
behaviour of real materials. A more complete discussion 
of these functions and of their relation to Expressions 
4-6 is given in [1] and [2]. We stress again the fact 
that these empirical expressions have nothing to do 
with any particular physical model - they represent 
mathematical devices for modelling the shapes of the 
observed complex C(co) or Z(co) arcs. 

It is equally established that similar deviations 
apply to the complex impedance plots 2(c~), especially 
in materials in which mobile ions contribute signifi- 
cantly to the dielectric response, such as fast ionic 
conductors [4]. Analogous empirical expressions to 
those given by Equations 7-9 have been used in that 
context as well, again purely as mathematical devices 
for modelling the observed behaviour. 

It was pointed out [1, 5, 6] that the most commonly 
observed tilted circular arc 2"(co) represented by 
and expression analogous to the Cole-Cole relation 
(Equation 7) corresponds directly to dielectric per- 

,Z" 

~ 
j ~ j ~ J J 

7,.- 
~ o~n/2 Z ' 

Figure 2 The inclined circular arc representing a non-ideal 
impedance following the Cole-Cole formula of Equation 7. An 
exactly similar form of plot would be applicable to the permittivity 
of certain non-Debye systems. The dotted line corresponds to LFD 
response as explained in the text. 

mittivity obeying the high-frequency "universal" 
relationship (Equation 4). 

A special limit of the "universal" relation (Equation 4) 
is found in all cases in which some slowly mobile 
electronic or ionic charge carriers dominate the polar- 
isation at low frequencies, when the familiar dipolar 
loss peak is replaced by a second power law of the type 
(Equation 4) but with a much lower value of the 
exponent n2 ~ 1. This type of response is referred 
to as low-frequency dispersion (LFD) [1, 7-9] and 
becomes dominant in virtually all dielectric materials 
at elevated temperatures when the ionic mobilities 
become sufficiently high. LFD is especially clearly 
visible in fast ionic conductors [5, 6] and is also the 
dominant form of behaviour in surface conduction 
on, for example, humid insulators [10]. 

The manifestation of LFD in the impedance plots is 
a straight line inclined at a very low angle to the 
horizontal, as shown by the dotted line in Fig. 2, and 
this tends to enhance the "flatness' of the impedance 
plot. There are many examples of this type of behav- 
iour and they tend to cause a good deal of confusion 
in the interpretation of dielectric data by the conven- 
tional approaches, while being easily accommodated 
in the framework of the "universal" theory. 

3. Conventional interpretation 
It has become customary to interpret any deviations 
from the straight semi-circular arc plots in the com- 
plex plane of either capacitance or impedance in terms 
of the concept of distribution of  relaxation times 
(DRT) [3, 11]. Oddly enough, the argument runs 
along similar lines equally for the capacitance and 
impedance plots, despite the fact these represent very 
different physical conditions and it is not possible to 
obtain an inclined circular arc in the capacitance plane 
from one in the impedance plane. It is argued that no 
system can be completely uniform and many systems 
are manifestly strongly non-uniform, so that there 
are many different dipolar species which must have 
different activation energies and characteristic relax- 
ation times. Because of this, it is argued, the ideal 
expression for capacitance or susceptibility (Equation 2) 
must be replaced by a summation over all the different 
relaxation times, which in the limit of a continuous 
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distribution of  these relaxation times becomes an 
integration: 

g(~) dr (10) C 
J0 1 + i~oz 

where g(z) is a suitable distribution function of  relax- 
ation times. The mathematical sense of Equation 10 is 
that the empirically observed dielectric response is 
expressed as an integral transform in terms of ideal 
Debye functions - an operation which is probably 
justified in most cases of  practical interest. The physi- 
cal sense of this operation is the postulation of the 
existence in the given material of a wide range of 
parallel polarization processes coexisting in the same 
medium, a very acceptable proposition. This reasoning 
does not in any way answer the question as to the 
justification for the particular form of  distribution 
function required to give the observed dielectric 
response - it merely states that the experimentally 
observed capacitance relation is consistent with a 
certain distribution of  relaxation times. 

What is important physically is that the DRT 
approach presupposes the existence in the dielectric 
medium in question of a continuous - or in certain 
circumstances discontinuous - distribution of paral- 
lel polarization processes. This does not present any 
serious conceptual difficulty, since a parallel arrange- 
ment is the natural outcome of  the existence in the 
material of a range of  different contributory processes. 

The situation is very different in the case of  the 
interpretation of  impedance plots in terms of DRT. 
Here an integral expression of  the type of Equation 10 
would imply the presence in the system under con- 
sideration of  a series combination of elements, in this 
instance of  a continuously graded stratification of the 
medium. While it is possible in principle to envisage 
such a peculiar medium, it is evident that this conse- 
quence of the application of the DRT interpretation to 
non-semicircular impedance plots has escaped people 
who were proposing this approach. As far as we can 

see, in all such cases the materials in question were 
thought to be homogeneous. 

It is evident, therefore, that while the D RT inter- 
pretation may possibly be valid in the case of  non- 
ideal complex permittivity or capacitance plots, it 
cannot be applied to the case of homogeneous materials 
showing inclined circular arc or otherwise non-ideal 
impedance plots. 

4. Conclusions 
We have shown that, whatever the physical justification 
for the interpretation of non-ideal, i.e. non-Debye 
behaviour of dielectric permittivity in terms of dis- 
tributions of relaxation times, there is no justification 
for applying the same approach to the case of  non- 
ideal impedance plots for homogeneous materials. 
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